COMPARISON OF SUPPORT VECTOR MACHINE(SVM), XGBOOST AND RANDOM FOREST FOR SENTIMENT ANALYSIS OF BUMBLE APP USER COMMENTS
Abstract
Sentiment analysis is the process of classifying texts into positive or negative sentiments. This is a common process in natural language processing (NLP), and has applications in areas such as customer feedback, product reviews, and social media. In this paper, the authors compare the performance of three different machine learning algorithms for sentiment analysis namely the Support Vector Machine (SVM), XGBoost, and Random Forest. The author evaluates the algorithm on a collection of review data from the Bumble application which is the first rated dating application on the Google Play Store where this dating application allows users to swipe left or right on potential partners, as well as various other interesting features provided to communicate with partners. From the research results the authors found that the Random Forest achieved the best performance, with an accuracy of 85.76%. SVM and XGBoost achieved 85.58% and 84.14% accuracy respectively. The results of this study indicate that Random Forest is a good choice for sentiment analysis tasks, especially when data is limited.
Keywords
Full Text:
PDFReferences
Iqbal Kharisudin, Fajar Sodik Pamungkas. “Analisis Sentimen Dengan SVM, NAIVE BAYES Dan KNN Untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 Pada Media Sosial Twitter,” 2021, 7.
https://journal.unnes.ac.id/sju/index.php/prisma/article/view/45038
Zidna Alhaq, Ali Mustopa, and Joko Dwi Santoso Sri Mulyatun. “PENERAPAN METODE SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER” 3, No. 1 (2021) (n.d.): 6.
https://doi.org/10.24076/joism.2021v3i2.558
Heart Parasian PR Zuriel, Achmad Fahrurozi. “IMPLEMENTASI ALGORITMA KLASIFIKASI SUPPORT VECTOR MACHINE UNTUK ANALISA SENTIMEN PENGGUNA TWITTER TERHADAP KEBIJAKAN PSBB” 26 No. 2 Agustus 2021 (n.d.): 14. https://doi.org/10.35760/ik.2021.v26i2.4289.
Widodo, Dina Wahyuni. “IMPLEMENTASI ALGORITMA K-MEANS CLUSTERING UNTUK MENGETAHUI BIDANG SKRIPSI MAHASISWA MULTIMEDIA PENDIDIKAN TEKNIK INFORMATIKA DAN KOMPUTER UNIVERSITAS NEGERI JAKARTA” VOL 1. NO.2 DESEMBER 2017 (n.d.): 11. https://doi.org/10.21009/pinter.1.2.10.
Karina. “Perbandingan Support Vector Machine (SVM) Dan Naïve Bayes Pada Analisis Sentimen,” 2021.
https://repository.unsri.ac.id/54114/
Intan Purnamasari, Aliffia Kulsumarwati, and Budi Arif Dermawan. “PENERAPAN SVM DAN INFORMATION GAIN PADA ANALISIS SENTIMEN PELAKSANAAN PILKADA SAAT PANDEMI” 7 No 2; September 2021 (n.d.): 9. https://doi.org/10.37012/jtik.v7i2.641.
Nur Fitriyah, Budi Warsito, and Di Asih I Maruddani. “ANALISIS SENTIMEN GOJEK PADA MEDIA SOSIAL TWITTER DENGAN KLASIFIKASI SUPPORT VECTOR MACHINE (SVM)” 9, Nomor 3, Tahun 2020 (n.d.): 15.
https://doi.org/10.14710/j.gauss.9.3.376-390
Oman Somantri, Slamet Wiyono, and Dairoh. “OPTIMALISASI SUPPORT VEKTOR MACHINE (SVM) UNTUK KLASIFIKASI TEMA TUGAS AKHIR BERBASIS K-MEANS” 13, No. 02, JULI, 2016 (n.d.): 10.
https://www.researchgate.net/publication/314669783_OPTIMALISASI_SUPPORT_VEKTOR_ MACHINE_(SVM)_UNTUK_KLASIFIKASI_TEMA_TUGAS_AKHIR_BERBASIS_K- MEANS
Hanna Willa Dhany, Fahmi Izhari. “ANALISIS ALGORITHMS SUPPORT VECTOR MACHINE DENGAN NAIVE BAYES KERNEL PADA KLASIFIKASI DATA” 6 NOMOR 2 JULI 2019 (n.d.): 6.
https://jurnal.pancabudi.ac.id/index.php/Juti/article/view/675
I Made Artha Agastya. “PENGARUH STEMMER BAHASA INDONESIA TERHADAP PEFORMA ANALISIS SENTIMEN TERJEMAHAN ULASAN FILM” 2018. http://dx.doi.org/10.33365/jtk.v12i1.70
DOI: https://doi.org/10.24167/proxies.v6i1.12453
Copyright (c) 2024 Proxies : Jurnal Informatika
View My Stats