EARLY ANOMALY PREDICTION OF MACHINE DAMAGE USING C4.5 ALGORITHM BASED ON IOT

Praseta Citra Bhaskara, Y.b. Dwi Setianto

Abstract


Machine condition is a problem that is difficult to predict, prediction of machine condition is an important aspect in the application of maintenance because the occurrence of damage can result in a decrease in the productivity of a company. Measurement of vibration, temperature, and machine displacement is a fairly good method to determine the condition of the machine because it is an indicator of mechanical conditions and an early indicator of damage to the machine as a whole, Application of Algorithms in processing vibration, temperature and machine displacement data to improve the prognosis of damage. In this project, predictions of machine condition will be carried out using the C4.5 algorithm. Data taken using sensors at a certain time will be used to predict the decline in the performance of a machine. This data will be used for training and testing data. This project was concluded that the C45 algorithm obtained accuracy with the difference between Training data and Test data, 60.8% for Training data and 76.4% for Testing data. Proving that the C45 algorithm is effective for predicting the initial anomaly of damage to the machine. It is necessary to re-calibrate the sensor limits, and replace the sensors used because this project uses sensors for prototypes.ds yang berhubungan dengan artikel ini. Tuliskan paling tidak tiga buah keywords.


Keywords


Machine condition; Vibration; Temperature; Machine Displacement; C4.5

Full Text:

PDF

References


G. N. Y. Lumban, “Prediksi Mahasiswa Berpotensi Non Aktif Menggunakan Data Mining dalam Decision Tree dan Algoritma C4.5,”

Jurnal Informasi & Teknologi, 2020. https://doi.org/10.37034/jidt.v2i1.22.

H. Jiawei and K. Micheline,“Data Mining: Concepts and Techniques. Morgan Kaufmann,” 2006. [Online]. Available:

http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-

Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf. Accessed: December 27,

G. Florin,“Data Mining,”Vol. 12, Intelligent Systems Reference Library, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

https://doi.org/10.1007/978-3-642-19721-5.

H. Khafizih,“Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Mahasiswa Non Aktif,” 2012. [Online]. Available:

http://publikasi.dinus.ac.id/index.php/semantik/article/download/132/87. Accessed: December 27, 2020.

T. Mohammad,“Prediksi Sisa Umur Pada Rotating Machinery Dengan Metode ANFIS (Adaptive Neuro-Fuzzy Inference

Systems),” 2010. [Online]. Available: https://dokumen.tips/reader/f/prediksi-sisa-umur-pada-rotating-machinery-i-tugas-akhir-tm-

-prediksi. Accessed: December 27, 2020.

P. D. Mustika and D. Sutawanir,“Prediksi Sisa Umur Bearing Menggunakan Regresi Eksponensial,” 2021. [Online]. Available:

https://journals.unisba.ac.id/0337661f-6b6b-4ef7-863b-ed9ec6381d61. Accessed: December 28, 2020.

N. Andhika and O. Isni,“Penerapan Algoritma Klasifikasi Data Mining C4.5 Pada Dataset Cuaca Wilayah Bekasi,” Konferensi

Nasional Ilmu Sosial dan Teknologi. Vol 1, no 1, 2017. [Online]. Available: https://media.neliti.com/media/publications/224664-

penerapan-algoritma-klasifikasi-data-min-e8105f77.pdf. Accessed: December 28, 2020.

G. S. Lorena Br, W. Zarman, and I. Hamidah,“Analisis Dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Memprediksi

Masa Studi Mahasiswa Berdasarkan Data Nilai Akademik,” 2014. [Online]. Available: https://ejournal.akprind.ac.id/1388b545-6412-

e3-8a27-964a4a14db11. Accessed: December 29, 2020.

J. Arta, I. Kadek, G. Indrawan, and G. R. Dantes,“ Data Mining Rekomendasi Calon Mahasiswa Berprestasi Di STMIK Denpasar

Menggunakan Metode Technique For Others Reference By Similarity To Ideal Solution,” JST (Jurnal Sains dan Teknologi) 5, 2017.

https://doi.org/10.23887/jst-undiksha.v5i2.8549.

E. Yusuf and W. P. Pudjo,“ Pemilihan Criteria Splitting Dalam Algoritma Iterative Dichotomiser 3 (ID3) Untuk Penentuka Kualitas

Beras : Studi Kasus Pada Perum Bulog Drive Lampung,” 2012. [Online]. Available:

https://journal.budiluhur.ac.id/index.php/telematika/article/download/159/153. Accessed: December 29, 2020.




DOI: https://doi.org/10.24167/proxies.v4i2.12438

Copyright (c) 2024 Proxies : Jurnal Informatika



View My Stats